Chevrolet is making huge news today, revealing most all of the details about its new, fifth-generation Small Block V8 engine – dubbed LT1 – the very mill that will power the upcoming 2014 Corvette. Note that we'll be updating this post all morning as the information keeps streaming in, so check back often.

Preliminary numbers suggest no less than 450 horsepower and 450 pound-feet of torque.

The Corvette's new LT1 V8 engine is, no surprise here, set to make the car very competitive within its class. Preliminary numbers suggest no less than 450 horsepower and 450 pound-feet of torque for the 6.2-liter engine, as well as an estimated 0-60 mile per hour time of less than 4.0 seconds when installed in the base C7. To put those numbers in perspective a bit: The LT1 not only has a far higher specific output than the 6.2-liter LS3 that it replaces – up at least 20 hp and 26 lb-ft – but its torque is seemingly competitive with that of the 7.0-liter LS7 that lives in the heart of the current Corvette Z06.

With all that power and accelerative performance, Chevy engineers are still keeping fuel economy in mind – with the help of cylinder deactivation, the new Corvette powerplant is expected to deliver more than 26 miles per gallon on the highway, though figures for city driving are still unknown. The new small block also benefits from the latest advanced engine tech like direct injection, continuously variable valve technology and a relatively high 11.5:1 compression ratio, all while coming in a claimed 40-pounds lighter and four inches shorter than the 4.4-liter twin-turbo V8 by BMW. Chevy also notes that while premium fuel is recommended, it is not required with the LT1. We're also told that a dry sump oil system is optional (a traditional wet sump unit is standard).

GM is calling the LT1 its most advanced combustion system ever. The company analyzed literally hundreds of systems to get to this final product, including crunching over 6 million hours of CPU time dedicated to combustion system optimization, and nearly 10 million hours when combustion, structure, cooling systems, lubrication and vent systems are factored in. In fact, the motor and its systems are so advanced that an academic SAE paper is being written to explain the whole shebang. The engine will also be built at the company's 75-year-old Tonawanda plant, which happens to be where Chevy's original small block V8 was produced way back in 1955.

There is a load of detailed information from GM, in our gallery of slides from the presentation this morning. Please excuse the lowish quality of the images here – we decided to err on quality in favor of bringing you all of the LT1 info we could, as fast as was possible.

UPDATE: Press release added below with more details.

UPDATE II: For much more information on the new small block, including videos of it on the dyno and additional tech details, click here for our more detailed feature.
Show full PR text
For Immediate Release: Wednesday, Oct. 24, 2012

All-New 2014 Corvette LT1 V-8 a Technological Powerhouse


• Advanced technologies including direct injection, active fuel management, continuously variable valve timing support advanced combustion system
• Preliminary output of 450 horsepower (335 kW) and 450 lb.-ft. of torque (610 Nm)
• Helps deliver estimated 0-60 performance in less than four seconds and best-ever fuel economy in the Corvette

DETROIT – When the all-new 2014 Chevrolet Corvette arrives late next year, it will be powered by a technologically advanced, racing-proven 6.2L V-8 delivering an estimated 450 horsepower and helping produce 0-60 times in less than four seconds.

The new Corvette LT1 engine, the first of the Gen 5 family of Small Block engines, combines several advanced technologies, including direct injection, Active Fuel Management and continuously variable valve timing to support an advanced combustion system.

"Our objective for the development of the all-new LT1 was to raise the bar for performance car engines," said Mary Barra, senior vice president, global product development. "We feel that we have achieved that by delivering a true technological masterpiece that seamlessly integrates a suite of advanced technologies that can only be found on a handful of engines in the world.

"What makes this engine truly special is the advanced combustion system that extracts the full potential of these technologies. The art and science behind that combustion system make the Corvette LT1 one of the most advanced V-8 engines in the world," said Barra.

Output, performance, and fuel economy numbers will not be finalized until early next year, but the new LT1 engine is expected to deliver:
• The most powerful standard Corvette ever, with preliminary output of 450 horsepower (335 kW) and 450 lb.-ft. of torque (610 Nm)
• The quickest standard Corvette ever, with estimated 0-60 performance of less than four seconds
• The most fuel-efficient Corvette ever, exceeding the 2013 EPA-estimated 26 miles per gallon on the highway.

"The Holy Grail for developing a performance car is delivering greater performance and more power with greater fuel economy and that's what we've achieved," said Tadge Juechter, Corvette chief engineer. "By leveraging technology, we are able to get more out of every drop of gasoline and because of that we expect the new Corvette will be the most fuel-efficient 450 horsepower car on the market."

Advanced combustion system optimized with 6 million hours of analysis
"The Corvette LT1 represents the most significant redesign in the Small Block's nearly 60-year history – building on its legacy to make one of the world's best engines even better," said Sam Winegarden, vice president, Global Powertrain Engineering. "More than just great horsepower, the LT1 has been optimized to produce a broader power band. Below 4,000 rpm, the torque of the Corvette LT1 is comparable to that of the legendary, 7.0L LS7 out of the current Corvette Z06. The LT1 is a sweetheart of a power plant and drivers will feel its tremendous torque and power at every notch on the tachometer."

Increased power and efficiency were made possible by an unprecedented level of analysis, including computational fluid dynamics, to optimize the combustion system, the direct injection fuel system, active fuel management and variable valve timing systems that support it. More than 10 million hours of computational analysis were conducted on the engine program, including 6 million hours (CPU time) dedicated to the advanced combustion system.

Direct injection is all-new to the engine architecture and is a primary contributor to its greater combustion efficiency by ensuring a more complete burn of the fuel in the air-fuel mixture. This is achieved by precisely controlling the mixture motion and fuel injection spray pattern. Direct injection also keeps the combustion chamber cooler, which allows for a higher compression ratio. Emissions are also reduced, particularly cold-start hydrocarbon emissions, which are cut by about 25 percent.

Active Fuel Management (AFM) – a first-ever application on Corvette – helps save fuel by imperceptibly shutting down half of the engine's cylinders in light-load driving.

Continuously variable valve timing, which GM pioneered for overhead-valve engines, is refined to support the LT1 AFM and direct injection systems to further optimize performance, efficiency and emissions.

These technologies support the all-new, advanced combustion system, which incorporates a new cylinder-head design and a new, sculpted piston design that is an integral contributor to the high-compression, mixture motion parameters enabled by direct injection.

The LT1 head features smaller combustion chambers designed to complement the volume of the unique topography of the pistons' heads. The smaller chamber size and sculpted pistons produce an 11.5:1 compression ratio, while the head features large, straight and rectangular intake ports with a slight twist to enhance mixture motion. This is complemented by a reversal of the intake and exhaust valve positions, as compared to the previous engine design. Also, the spark plug angle and depth have been revised to protrude farther into the chamber, placing the electrode closer to the center of the combustion to support optimal combustion.

The pistons feature unique sculpted topography that was optimized via extensive analysis to precisely direct the fuel spray for a more complete combustion. The contours of the piston heads are machined to ensure dimensional accuracy – essential for precise control of mixture motion and the compression ratio.

Race-proven legacy, state-of-the-art performance
The first Small Block V-8 debuted in the Corvette in 1955. It displaced 4.3L (265 cubic inches) and was rated at 195 horsepower, drawing air and fuel through a four-barrel carburetor. Five years later, V-8 power helped Corvette secure its first victory at the 24 Hours of Le Mans.

In 2012, the Small Block-powered Corvette Racing C6.R beat Ferrari, BMW and Porsche to sweep the drivers', team, and manufacturer championships in production-based American Le Mans Series GT class. These championships make Corvette Racing the most successful team in ALMS history, with a total of 77 class wins, eight drivers' championships, and nine manufacturer and team championships since 2001.

"The engine requirements for a production car and a race car are remarkably similar," said Jordan Lee, Small Block chief engineer and program manager. "In both cases, you want an engine that is powerful and efficient, compact and lightweight, and durable. That combination is what made the original Small Block so successful. Today, the introduction of state-of-the-art technologies and engineering makes one of the best performance car engines in the world even better."

As an example, the new LT1 engine is 40 pounds lighter than a competitor's twin-turbo 4.4L, DOHC V-8 with similar output. That weight savings not only improves the Corvette's power-to-weight ratio, but also contributes to a near-perfect 50/50 weight balance for enhanced steering response and handling.

The new LT1 is also four inches shorter in overall height than the competitive DOHC V-8. That also improves handling by lowering the center of gravity while enabling a low hood line – contributing to the Corvette's iconic profile, as well as ensuring exceptional driver visibility.

The new LT1 is the third engine in the Corvette's history to be so-named, with previous versions introduced in 1970 (Gen 1) and 1992 (Gen 2). All iterations of the LT1 – and all Small Block engines – have shared a compact design philosophy that fosters greater packaging flexibility in sleek vehicles such as the Corvette.

"The power and efficiency of the Small Block V-8 are hallmarks of Corvette performance," said Lee. "But, the compact size and great power-to-weight are just as important for the overall driving experience. The all-new LT1 will play a huge role in making the all-new Corvette a world-class sports car, in terms of technology, performance, and refinement."

Engine features and highlights
All-aluminum block and oil pan: The Gen 5 block was developed with math-based tools and data acquired in GM's racing programs, providing a light, rigid foundation for an impressively smooth engine. Its deep-skirt design helps maximize strength and minimize vibration. As with the Gen 3 and Gen 4 Small Blocks, the bulkheads accommodate six-bolt, cross-bolted main-bearing caps that limit crank flex and stiffen the engine's structure. A structural aluminum oil pan further stiffens the powertrain.

The block features nodular iron main bearing caps, which represent a significant upgrade over more conventional powdered metal bearing caps. They are stronger and can better absorb vibrations and other harmonics to help produce smoother, quieter performance.

Compared to the Gen 4 engine, the Gen 5's cylinder block casting is all-new, but based on the same basic architecture. It was refined and modified to accommodate the mounting of the engine-driven direct injection high-pressure fuel pump. It also incorporates new engine mount attachments, new knock sensor locations, improved sealing and oil-spray piston cooling.

Advanced oiling system, with available dry-sump system: The LT1 oiling system – including oil-spray piston cooling – was also optimized for improved performance. It is driven by a new, variable-displacement oil pump that enables more efficient oil delivery, per the engine's operating conditions. Its dual-pressure control enables operation at a very efficient oil pressure at lower rpm coordinated with AFM and delivers higher pressure at higher engine speeds to provide a more robust lube system for aggressive engine operation.

Standard oil-spray piston cooling sprays the underside of each piston and the surrounding cylinder wall with an extra layer of cooling oil, via small jets located at the bottom of the cylinders. For optimal efficiency, the oil jets are used only when they are needed the most: at start-up, giving the cylinders extra lubrication that reduces noise, and at higher engine speeds, when the engine load demands, for extra cooling and greater durability.

An available dry-sump oiling system promotes exceptional lubrication system performance during aggressive driving maneuvers and high cornering loads. It includes two stages: a pressure stage and a scavenge stage. The pressure stage includes the new, dual-pressure-control and variable-displacement vane pump.

Dexos semi-synthetic motor oil, with a 5W30 specification, helps reduce friction to further enhance the LT1's efficiency.

New, tri-lobe camshaft: Compared to the Gen 4 Small Block, the camshaft remains in the same position relative to the crankshaft and is used with a new rear cam bearing, but it features an all-new "tri-lobe" designed lobe which exclusively drives the engine-mounted direct injection high-pressure fuel pump, which powers the direct-injection combustion system. The cam's specifications include 14mm/13.3mm (0.551/0.524-inch) intake/exhaust lift, 200/207-crank angle degrees intake/exhaust duration at 0.050-inch tappet lift and a 116.5-degree cam angle lobe separation.

New, cam-driven fuel pump: The direct injection system features a very-high-pressure fuel pump, which delivers up to 15Mpa (150 bar). The high-pressure, engine-driven fuel pump is fed by a conventional fuel-tank-mounted pump. The direct injection pump is mounted in the "valley" between cylinder heads – beneath the intake manifold – and is driven by the camshaft at the rear of the engine. This location ensures any noise generated by the pump is muffled by the intake manifold and other insulation in the valley.

PCV-integrated rocker covers: One of the most distinctive features of the new engine is its domed rocker covers, which house the, patent-pending, integrated positive crankcase ventilation (PCV) system that enhances oil economy and oil life, while reducing oil consumption and contributing to low emissions. The rocker covers also hold the direct-mount ignition coils for the coil-near-plug ignition system. Between the individual coil packs, the domed sections of the covers contain baffles that separate oil and air from the crankcase gases – about three times the oil/air separation capability of previous engines.

Intake manifold and throttle body assembly: The LT1's intake manifold features a "runners in a box" design, wherein individual runners inside the manifold feed a plenum box that allows for excellent, high-efficiency airflow packaged beneath the car's low hood line.

Acoustic foam is sandwiched between the outside top of the intake manifold and an additional acoustic shell to reduce radiated engine noise, as well as fuel pump noise.

The manifold is paired with an electronically controlled throttle, featuring an 87mm bore diameter and a "contactless" throttle position sensor design that is more durable and enables greater control.

Four-into-one exhaust manifolds: The LT-1 uses a cast version of the "four-into-one" short-header exhaust manifold design used on the Gen 4 LS7 engine. The cast header passages enable consistent exhaust flow into the "wide mouth" collector at the converter.

Cooling system, humidity sensor and more: Additional features and technologies of the Gen 5 Small Block include:
• A revised cooling system with an offset water pump and thermostat for more efficient performance
• Air induction humidity sensor ensures optimal combustion efficiency, regardless of the surrounding air's humidity
• 58X ignition system with individual ignition coil modules and iridium-tip spark plugs
• All-new "E92" engine controller.

General Motors' investment in the Gen 5 Small Block will create or retain more than 1,600 jobs in five North American plants, including Tonawanda, New York, which recently received upgrades to support its production.

Founded in 1911 in Detroit, Chevrolet is now one of the world's largest car brands, doing business in more than 140 countries and selling more than 4 million cars and trucks a year. Chevrolet provides customers with fuel-efficient vehicles that feature spirited performance, expressive design and high quality. More information on Chevrolet models can be found at www.chevrolet.com.

# # #


I'm reporting this comment as:

Reported comments and users are reviewed by Autoblog staff 24 hours a day, seven days a week to determine whether they violate Community Guideline. Accounts are penalized for Community Guidelines violations and serious or repeated violations can lead to account termination.


    • 1 Second Ago
  • 233 Comments
      Nick B
      • 2 Years Ago
      I was wondering how long it would take the GT-R nutswingers to show up in this thread, I see it took all of about two hours. If you are so biased that you cant see how well engineered this engine is then you shouldnt be commenting.
        • 2 Years Ago
        @Nick B
        [blocked]
      drant22
      • 2 Years Ago
      People miss the fact that these motors that GM put out are pretty reliable, the cars themselves will die while the motors still keep going and they aren't sensitive like the newer turbo cars. Cheaper, lighter, smaller (than every single V8 on the market of its caliber). These series of V8's are used in so many import tuner and pro street applications because they just work. This is impressive as an overall development. I didn't expect a huge power bump just yet, but, when GM went from the LS1 to the LS3, that was a good 320-430 HP difference, looking forward to seeing what this thing does.
        • 2 Years Ago
        @drant22
        [blocked]
      Jonathan Wayne
      • 2 Years Ago
      I love V8s and I love GM V8s. GM may do a lot of sketchy things, but their V8 engines are always awesome.
        • 2 Years Ago
        @Jonathan Wayne
        [blocked]
          KaiserWilhelm
          • 2 Years Ago
          Sure, for rich people.
          wooootles
          • 2 Years Ago
          You can't afford AMG cars. Most likely, you can;t afford cars with LS engines either.
          RampantFury
          • 2 Years Ago
          And you damn sure dont have a Mclaren.
          Wayne
          • 2 Years Ago
          AMG modifies engines, not mfg them.
          Tetratron
          • 2 Years Ago
          Yeah.... It's totally believable that a guy using a Dragonball Z quote for a screenname owns a Mclaran...
          z28ssx
          • 2 Years Ago
          No, AMG makes more expensive engines.
          • 2 Years Ago
          [blocked]
          • 2 Years Ago
          [blocked]
      atvman
      • 2 Years Ago
      DI, VVT, cylinder deactivation; pretty much all the latest tech being shoved in there. Should be quite the engine. 450 lb-ft is pretty close to the limit of what you'll get from an NA OHV 6.2L, but I'm thinking horsepower to be closer to 470, maybe 475. I was expecting LR1, LX1, or LZ1. LT1 could make things a bit complicated when specing parts.
        Fonin
        • 2 Years Ago
        @atvman
        agree regarding the LT1 name. now gives us LT5!
      Joe
      • 2 Years Ago
      hmm... at least 450 horses... I wonder how close to 500 horses theyre gonna get with this thing... the C7 is going to be nuts.
      187fl
      • 2 Years Ago
      If you still have doubts about this engine here you go.....In 2012, the Small Block-powered Corvette Racing C6.R beat Ferrari, BMW and Porsche to sweep the drivers', team, and manufacturer championships in production-based American Le Mans Series GT class. These championships make Corvette Racing the most successful team in ALMS history, with a total of 77 class wins, eight drivers' championships, and nine manufacturer and team championships since 2001.
      RedRaiderGuy08
      • 2 Years Ago
      It's got an electric water pump as well... Hopefully that will be interchangable with the LS motors.
        OnTheRocks
        • 2 Years Ago
        @RedRaiderGuy08
        I thought the water pump had just been moved off to the side in between the alt and AC?
          RedRaiderGuy08
          • 2 Years Ago
          @OnTheRocks
          Looking at it again you may be right. Thats a deamatic change from how its done now.
      n.bob2
      • 2 Years Ago
      Yes please.
      jonnybimmer
      • 2 Years Ago
      I wonder how they managed the variable timing with the single cam. About time it gets direct injection though. Personally, I've always preferred the more "advanced" DOCH motors (the inlines in particular), but I've also always been a fan of GM's small block for it's simplicity and straightforward layout (and the reliability and power that comes from it). It's the type of motor a typical owner isn't afraid of working on and I think that's something worth hanging onto. Yes, the world needs progressive powertrains like the 918's to push the industry forward, but at the same time, there's something to be said for the motor that any Joe can rip open, bump the power up, and bolt into whatever car they want. The small block has been that motor for so long and I'm glad GM is continuing with that trend.
        atvman
        • 2 Years Ago
        @jonnybimmer
        The Viper engine uses a two piece cam to independently vary timing on exhaust and intake. It wouldn't surprise me if this uses something similar.
          Wayne
          • 2 Years Ago
          @atvman
          The V-10 in the Viper is a boat anchor. It's only claim to fame is it's displacement...
          Cory Stansbury
          • 2 Years Ago
          @atvman
          The one picture made it look like they had rocker pivot point adjustment to vary lift. They may couple this with their existing cam phasing (or maybe cam-in-cam) to cover timing and lift.
        Hazdaz
        • 2 Years Ago
        @jonnybimmer
        Some cut-away photos or CAD sections would be nice to see how it all goes together. They'll probably do that when the Vette is officially announced.
      Hazdaz
      • 2 Years Ago
      Corvette. Next-gen pickups and SUVs. Possibly the next-gen CTS and maybe the upcoming Chevy SS? Where else will this engine be used? I would imagine the next-gen Camaro gets a version of it, but that would also mean the ATS would as well (since they will be sharing the same platform). Its not that the ATS is really that small, but would we really see a version of this engine in that car as well? Is this new LT1 replacing ALL other small block V8 engines for GM?
        Jake Robb
        • 2 Years Ago
        @Hazdaz
        I have it on good authority that there will be an ATS-V equipped with this engine or a variant of it. LT1 is the first of the fifth-generation GM small blocks. There are sixteen fourth-generation small block variants, with various features, displacements, camshaft profiles, and induction styles (http://en.wikipedia.org/wiki/GM_LS_engine#Generation_IV_.282005.E2.80.93current.29), to suit the varying needs of the cars and trucks in which they were/are sold. It's reasonable to assume that by the end of the fifth-generation engine's run, there will be a similar number of variants.
      apache4541
      • 2 Years Ago
      I love take new LT-1 put in my 1957 Chevy Bel Air!
      Merc1
      • 2 Years Ago
      Great news.... M
    • Load More Comments