Video

DARPA VTOL X-Plane design is looking crazy, innovative

This post is appearing on Autoblog Military, Autoblog's sub-site dedicated to the vehicles, aircraft and ships of the world's armed forces.

DARPA's dark magic and sorcery are once again making headlines, as the shadowy organization introduced the design for its second phase of the VTOL X-Plane project and awarded a contract to Aurora Flight Systems. And boy, does it look wild.

The brief for the VTOL X-Plane is certainly impressive – develop an aircraft that can takeoff and land vertically, cut through the air at 300 to 400 knots (345 to 460 miles per hour), carry 40 percent of its total weight in cargo – but it seems Aurora's design takes that further, using an unmanned aircraft to accomplish those goals. Covering DARPA's aims is one thing, but it's Aurora's design that truly impresses. The company imagines a UAV with two main wings, two smaller front-mounted canards, and one of the 4,000-horsepower turboshaft engines from an MV-22 Osprey.

But it's what that engine would power that's perhaps the most interesting aspect of this aircraft – 24 ducted fans, with nine on each wing and three on each canard. These fans could rotate allowing for both forward flight and hovering. It's absolutely remarkable, looking like the the modern version of something from the earliest days of flight.

Now, this is not going to be some production drone. The knowledge and experience that come from Aurora's entry could be applied to real-world aircraft, both manned and unmanned. Flight tests of this concept are expected to kick off in 2018. You can get a closer look at how Aurora's entry operates in the video above.

Show full PR text
DARPA Announces VTOL X-Plane Phase 2 Design
Unorthodox unmanned aircraft would push the limits of technology to combine plane-like speed and helicopter-like agility into one breakthrough vehicle

For decades, aircraft designers seeking to improve vertical takeoff and landing (VTOL) capabilities have endured a substantial set of interrelated challenges. Dozens of attempts have been made to increase top speed without sacrificing range, efficiency or the ability to do useful work, with each effort struggling or failing in one way or another.

DARPA's VTOL Experimental Plane (VTOL X-Plane) program aims to overcome these challenges through innovative cross-pollination between fixed-wing and rotary-wing technologies and by developing and integrating novel subsystems to enable radical improvements in vertical and cruising flight capabilities. In an important step toward that goal, DARPA has awarded the Phase 2 contract for VTOL X-Plane to Aurora Flight Sciences.

"Just when we thought it had all been done before, the Aurora team found room for invention—truly new elements of engineering and technology that show enormous promise for demonstration on actual flight vehicles," said Ashish Bagai, DARPA program manager. "This is an extremely novel approach," Bagai said of the selected design. "It will be very challenging to demonstrate, but it has the potential to move the technology needle the farthest and provide some of the greatest spinoff opportunities for other vertical flight and aviation products."

VTOL X-Plane seeks to develop a technology demonstrator that could:

Achieve a top sustained flight speed of 300 kt to 400 kt
Raise aircraft hover efficiency from 60 percent to at least 75 percent
Present a more favorable cruise lift-to-drag ratio of at least 10, up from 5-6
Carry a useful load of at least 40 percent of the vehicle's projected gross weight of 10,000-12,000 pounds

Aurora's Phase 2 design for VTOL X-Plane envisions an unmanned aircraft with two large rear wings and two smaller front canards—short winglets mounted near the nose of the aircraft. A turboshaft engine—one used in V-22 Osprey tiltrotor aircraft—mounted in the fuselage would provide 3 megawatts (4,000 horsepower) of electrical power, the equivalent of an average commercial wind turbine. The engine would drive 24 ducted fans, nine integrated into each wing and three inside each canard. Both the wings and the canards would rotate to direct fan thrust as needed: rearward for forward flight, downward for hovering and at angles during transition between the two.

The design envisions an aircraft that could fly fast and far, hover when needed and accomplish diverse missions without the need for prepared landing areas. While the technology demonstrator would be unmanned, the technologies that VTOL X-Plane intends to develop could apply equally well to manned aircraft. The program has the goal of performing flight tests in the 2018 timeframe.

Aurora's unique design is only possible through advances in technology over the past 60 years, in fields such as air vehicle and aeromechanics design and testing, adaptive and reconfigurable control systems, and highly integrated designs. It would also be impossible with the classical mechanical drive systems used in today's vertical lift aircraft, Bagai said.

The Phase 2 design addresses in innovative ways many longstanding technical obstacles, the biggest of which is that the design characteristics that enable good hovering capabilities are completely different from those that enable fast forward flight. Among the revolutionary design advances to be incorporated in the technology demonstrator:

Electric power generation and distribution systems to enable multiple fans and transmission-agnostic air vehicle designs
Modularized, cellular aerodynamic wing design with integrated propulsion to enable the wings to perform efficiently in forward flight, hover and when transitioning between them
Overactuated flight control systems that could change the thrust of each fan to increase maneuverability and efficiency

"This VTOL X-plane won't be in volume production in the next few years but is important for the future capabilities it could enable," Bagai said. "Imagine electric aircraft that are more quiet, fuel-efficient and adaptable and are capable of runway-independent operations. We want to open up whole new design and mission spaces freed from prior constraints, and enable new VTOL aircraft systems and subsystems."

Share This Photo X