It's called "F3T," and that stands for Ford Free-form Fabrication Technology. The process that The Blue Oval has developed means being able to sidestep the weeks-long process of tool-and-die making when engineers want to construct a new part, allowing them to fabricate a three-dimensional part from a two-dimensional sheet of metal in just hours.

While F3T is being developed it is limited to "low-volume prototyping or even low-volume niche vehicles," but the next step is to evaluate it for use in Ford's global manufacturing facilities. You can find out more about it in the video and the press release below.



Show full PR text
FORD DEVELOPS ADVANCED TECHNOLOGY TO REVOLUTIONIZE PROTOTYPING, PERSONALIZATION, LOW-VOLUME PRODUCTION

- Ford engineers are developing a highly flexible, first-of-its-kind, patented technology to rapidly form sheet metal parts for low-volume production applications

- Once fully developed, the technology will allow for lower costs and ultrafast delivery times for prototypes – within three business days versus conventional methods that take anywhere from two to six months

- Automotive applications include prototyping, concept vehicles and vehicle personalization; other applications include aerospace, defense, transportation and appliance industries


DEARBORN, Mich., July 3, 2013 – Continuing to lead the way in technology and advanced manufacturing, Ford Motor Company is developing a new form of manufacturing technology that has the potential to reduce costs and delivery time for sheet metal parts needed in smaller quantities.

The development is based on Ford Freeform Fabrication Technology (F3T), a unique, patented manufacturing process developed at the Ford Research and Innovation Center. Through this process, a piece of sheet metal is clamped around its edges and formed into a 3D shape by two stylus-type tools working in unison on opposite sides of the sheet metal blank. Similar to a digital printer, after the CAD data of a part are received, computer-generated tool paths control the F3T machine to form the sheet metal part into its final shape to the required dimensional tolerances and surface finish.

"The technology behind F3T is yet another example of Ford leading in the advanced manufacturing space," said John Fleming, executive vice president, global manufacturing and labor affairs. "As we forge ahead with cutting-edge technologies in manufacturing like flexible body shops, robotics, 3D printing, virtual reality and others, we want to push the envelope with new innovations like F3T to make ourselves more efficient and build even better products."

Currently, traditional stamping processes are energy-intensive, and it often takes several months for the first part to move from concept to production. While traditional processes remain the most efficient method for high-volume stamping, efficiencies for low-volume production can be achieved with the flexibility F3T provides. Benefits of F3T include:

Low cost: Geometric-specific forming dies are completely eliminated, along with the high cost and long lead time associated with die engineering, construction and machining

Fast delivery time: The technology aims to enable the delivery of a sheet metal part within three business days from the time the CAD model of the part is received. With the current technology, parts are delivered anywhere from two to six months using conventional methods – up to approximately 60 times longer than the potential turnaround time for F3T

More flexibility: Once fully developed, F3T will help to improve the vehicle research and development process, allowing for more flexibility in quickly creating parts for prototypes and concept cars. Currently, creating a prototype die can take six to eight weeks, and developing a full prototype vehicle usually takes several months and up to hundreds of thousands of dollars. F3T could produce sheet metal parts for prototypes in just days for essentially no cost

F3T has the potential to allow for greater personalization options, adding the ability for buyers to customize vehicle bodywork. F3T is also expected to have broad applications outside of the automotive industry, including use in the aerospace, defense, transportation and appliance industries.

The project is part of a three-year, $7.04 million U.S. Department of Energy grant to advance next-generation, energy-efficient manufacturing processes. Led by Ford, other collaborators include Northwestern University, The Boeing Company, Massachusetts Institute of Technology and Penn State Erie. Five innovative manufacturing projects were awarded a total of $23.5 million by the Department of Energy in March to advance clean manufacturing and help U.S. companies increase their competitiveness.

"The F3T sheet metal forming process is one of many advanced manufacturing technologies under development at Ford," said Randy Visintainer, director of Ford Research and Innovation. "We developed this process during the past four years for small-scale applications in a laboratory setting, and the DOE award enables us to scale the process for larger applications and a full prove-out for manufacturing feasibility."

# # #

About Ford Motor Company
Ford Motor Company, a global automotive industry leader based in Dearborn, Mich., manufactures or distributes automobiles across six continents. With about 175,000 employees and 65 plants worldwide, the company's automotive brands include Ford and Lincoln. The company provides financial services through Ford Motor Credit Company. For more information regarding Ford and its products worldwide, please visit http://corporate.ford.com.


I'm reporting this comment as:

Reported comments and users are reviewed by Autoblog staff 24 hours a day, seven days a week to determine whether they violate Community Guideline. Accounts are penalized for Community Guidelines violations and serious or repeated violations can lead to account termination.


    • 1 Second Ago
  • 29 Comments
      tool0117
      • 1 Year Ago
      cool. go america
      groingo
      • 1 Year Ago
      Been using this technology in the plastics, fiberglass and composites industry for over ten years, virtually eliminates hand built plugs and molds where the entire process from concept to part can take less than a week. Good to see Ford catching up though, maybe they can reduce the price of their cars then?
        ngiotta
        • 1 Year Ago
        @groingo
        Catching up? I'm sure Ford has been using this technology for plastics and composites for over 10 years too. This is for sheet metal forming.
        methos1999
        • 1 Year Ago
        @groingo
        Doubtful this technology would reduce the price of their cars, as it won't replace tooling costs for production vehicles. Likely it will just improve product development time, but not enough to have an effect on consumer vehicle cost.
      cpmanx
      • 1 Year Ago
      This technology is hardly unique to Ford, though it is good to see the company actively engaged in cutting-edge engineering. See, for instance: http://www.msoe.edu/academics/research_centers/reu/solid_freeform_fabrication.shtml I doubt we'll see lower prices as a result. More likely, we will see more rapid adoption of new designs and technologies in tomorrow's vehicles. Those changes will be simpler and cheaper than they would be otherwise so in that sense we may see the cost savings in the form or smaller charges for the upgrades & responses to new regulations.
        Brex
        • 1 Year Ago
        @cpmanx
        How did this get upvoted? Your link isn't remotely close to the rapid prototyping described here.
      ELG
      • 1 Year Ago
      so shut up and make a new GT40 already then!
        m_2012
        • 1 Year Ago
        @ELG
        The 100 pound weight reduction of the new engine along with the added 150HP would definitely make an entertaining GT, even if they just built the car as it was.
          ELG
          • 1 Year Ago
          @m_2012
          seriously. pull out the 2005 chassis, drop in the GT500 motor, and sell it for about the same price as a z06 or viper, and rule the world.
      • 1 Year Ago
      [blocked]
        Brodz
        • 1 Year Ago
        They could. But they wouldn't want to spend the money.
      kaneda
      • 1 Year Ago
      World stops, looks, yawns and moves on.
      Brodz
      • 1 Year Ago
      All about those low costs aren't you Ford? And what global factories? Soon you'll have them all shut down.
        cpmanx
        • 1 Year Ago
        @Brodz
        It's part of a project designed to make US manufacturing more efficient and globally competitive.
      carnut0913
      • 1 Year Ago
      "I doubt we'll see lower prices as a result. More likely, we will see more rapid adoption of new designs and technologies in tomorrow's vehicles. " I think what we will be able to see is a greater proliferation of niche vehicles/bodystyles. With platforms more flexible these days- companies will have a lower break even point for a niche vehicle on a production platform. Hopefully, we'll see exercises like the upcoming Audi Quattro. niche vehicle on an A5 setup.
        Greg
        • 1 Year Ago
        @carnut0913
        This technique is far too slow for ANY production car, even niche products. It's just as slow as weaving & curing carbon fiber. This technology is for speeding up the design phase of making a car. It gives them the freedom to try more variations & run more tests.
      Ryth
      • 1 Year Ago
      The process that The Blue Oval has developed means being able to sidestep the weeks-long process of tool-and-die making when engineers want to construct a new part, allowing them to fabricate a three-dimensional part from a two-dimensional sheet of metal in just hours. Queue up the Union gripes in 3...2...1.
      ccweems
      • 1 Year Ago
      Prototype to final approval may take several iterations. Even if the original tooling can be modified it will still take weeks to incorporate the new changes. This technique could drastically reduce the cost and time to develop a finished product. On high volume models the distributed development cost is pretty low which makes this application of technology of interest mainly to the bean counters. Where this is of interest to Autoblog readers is its ability to lower cost for low volume vehicles where under the present system the high development costs often kills projects before they get started.
      The Wasp
      • 1 Year Ago
      "two-dimensional sheet of metal" Uh?
        Greg
        • 1 Year Ago
        @The Wasp
        It helps the car be "grounded to the ground."
      • 1 Year Ago
      [blocked]
    • Load More Comments