• Feb 10, 2010
Porsche 911 GT3 R Hybrid – Click above for high-res image gallery

In an interesting about-face, Porsche has revealed the first images and details on its new racer, the 911 GT3 R Hybrid.

Based on the rear-drive 911 GT3 R that's set to take to the track in privateer hands later this year, the GT3 R Hybrid utilizes a rear-mounted, 480-hp 4.0-liter flat-six in conjunction with two electric motors that drive the front wheels. Residing in the space normally reserved for the passenger seat sits a flywheel, which harnesses kinetic energy under braking and can spin upwards of 40,000 rpm. Once enough energy is stored, the system lets loose up to 120 kilowatts – approximately 160 horsepower – to the front wheels in six to eight second bursts that are controlled by a steering wheel-mounted button.

Porsche apparently hasn't released official performance specs, but the GT3 R Hybrid's world debut will take place at the Geneva Motor Show before it hits the track for its motorsports debut at the Nürburgring 24 Hours on May 15. Devised as a rolling "racing laboratory," after the Hybrid takes to the Green Hell this year, Porsche plans to assault the 24 Hours of LeMans in a refined version in 2012, just as the sanctioning body begins to favor hybrids. Now about that "no hybrids" thing...


Show full PR text
Hybrid Porsche 911 GT3 R to make world debut in Geneva
  • Innovative hybrid drive unveiled at Geneva Show prior to racing at the Nurburgring in May
  • Development of 911 GT3 racer serves as a spearhead for technology and 'racing laboratory'
  • Showcase for Porsche Intelligent Performance philosophy
  • A Porsche 911 GT3 R with innovative hybrid drive will be unveiled at the Geneva Motor Show in March, taking the evolution of the iconic sports coupe to new levels in motor sport and opening a new chapter in an illustrious racing record that has witnessed more than 20,000 victories in 45 years.
After its debut in Switzerland, the 911 GT3 R Hybrid will be tested in long-distance races around the Nürburgring, Germany. The highlight of this test programme will be the 24 Hours race around the 14-mile Nürburgring Nordschleife circuit on 15/16 May. However, the focus is not on the 911 GT3 R Hybrid winning the race but rather serving as a spearhead for the technology and a 'racing laboratory' that will provide invaluable knowledge and insight on the subsequent use of hybrid technology in road-going Porsche sports cars.

110 years since Ferdinand Porsche – the company's founder - developed the world's first car with hybrid drive, the Lohner Porsche Semper Vivus, it is entirely appropriate that Porsche is once again employing this visionary drive concept in a production car-based GT racing programme.

The 911 GT3 R Hybrid
The hybrid technology featured in the 911 GT3 R Hybrid has been developed especially for racing, and is set apart from conventional hybrid systems in its configuration and choice of components. Uniquely, an electrical front axle drive with two electric motors each developing 60 kW supplements the familiar 480 hp (353 kW) four-litre flat-six 'boxer' petrol engine at the rear of the 911 GT3 R Hybrid. Consequently, the 911 GT3 R Hybrid has four driven wheels, offering even greater traction and agility.

A further significant point is that instead of the usual batteries of a conventional hybrid-powered road car, this 911 features an electric flywheel power generator – mounted inside the cockpit beside the driver – that delivers energy to the electric motors on the front axle.

The flywheel generator itself is an electric motor - with its rotor capable of spinning at speeds of up to 40,000 rpm - and stores energy mechanically as rotation, or kinetic, energy. The flywheel generator is charged-up whenever the driver applies the brakes, with the two electric motors reversing their function on the front axle and acting themselves as generators.

The driver is able to call upon this extra energy from the charged flywheel generator at his command for competitive advantage, such as when accelerating out of a bend or overtaking. The flywheel generator is slowed down electromagnetically in the generator mode and able to supply up to 120 kW to the two electric motors at the front axle from its resource of kinetic energy. This additional power is available to the driver after each charge process for approximately 6 - 8 seconds.

Energy formerly converted into heat, and thus wasted, upon every application of the brakes is now converted highly efficiently into additional drive power.

Depending on racing conditions, hybrid drive is used in this case not only for extra power, but also to save fuel. This again increases the efficiency and, accordingly, the performance of the 911 GT3 R Hybrid, by reducing the weight of the fuel tank or making pit stops less frequent, for example.

Porsche Intelligent Performance
The 911 GT3 R Hybrid is a perfect example of the Porsche Intelligent Performance philosophy, a principle to be found in every Porsche and defined as more power on less fuel, more efficiency and lower CO2 emissions – on the race track and on the road. Already, customers can buy a Porsche 911 coupe with a six-cylinder 345 bhp engine which can return nearly 30mpg Combined and produces just 225 g/km CO2; a feat unrivalled in its performance class and just one example of the application of Porsche Intelligent Performance to maintain outstanding driving dynamics yet lower running costs and environmental impact.

Devising smart, individual engineering solutions to combine performance and efficiency with everyday usability is something for which Porsche is renowned, and is evident in such developments as lightweight body construction methods, Porsche Ceramic Composite Brakes (PCCB) and the Porsche Doppelkupplungsgetreibe (PDK) double-clutch gearbox.


I'm reporting this comment as:

Reported comments and users are reviewed by Autoblog staff 24 hours a day, seven days a week to determine whether they violate Community Guideline. Accounts are penalized for Community Guidelines violations and serious or repeated violations can lead to account termination.


    • 1 Second Ago
    Advertisement
    2015 Mitsubishi Lancer
    $18,205 / 1 miles / WA
    2012 Kia Optima
    $22,788 / 40,373 miles / WA
    2014 Kia Sedona
    $20,474 / 14,871 miles / WA