Nanotechnology isn't new to the green car discussion. After all, we've heard about the potential for nano lubricants and Ford's work researching nanotechnology for developing "paints, plastics, light metals and catalysts that will allow reduced vehicle weight and improved fuel economy." There's even a car called the Nano and a company called Altair Nanotechnologies that makes batteries, but those are different stories altogether.

Honda has been working on nanotubes for over a decade, and the company is now talking about its work with "microscopic carbon nanotubes a hundred thousand times thinner than a human hair," saying that the potential to move electricity faster and further with "minimal" energy loss with these devices could be used in "much more powerful and compact computers, electrodes for supercapacitors, electrical cables, batteries, solar cells, fuel cells, artificial muscles, composite material for automobiles and planes, energy storage materials and electronics for hybrid vehicles." Hybrids and fuel cells are good and all, but artificial muscles? Hmmm. Yes, I would like two tickets to the gun show courtesy of Honda. Thanks.

Results of this new research, conducted with help from Purdue University and the University of Louisville, was published in the most recent edition of Science. Read more after the jump.

[Source: Honda]

PRESS RELEASE:

Breakthrough Research to Appear in October 2 Edition of Science Magazine


Microscopic carbon nanotubes a hundred thousand times thinner than a human hair may have the potential to transport electricity faster and over greater distances with minimal loss of energy, according to new research that will be published today, in Science magazine. The research was led by Honda Research Institute USA, Inc., in conjunction with researchers at Purdue University and the University of Louisville.

The findings open new possibilities for miniaturisation and energy efficiency, including much more powerful and compact computers, electrodes for supercapacitors, electrical cables, batteries, solar cells, fuel cells, artificial muscles, composite material for automobiles and planes, energy storage materials and electronics for hybrid vehicles.

Microscopic carbon nanotubes are grown on the surface of metal nanoparticles, taking the cylindrical form of rolled honeycomb sheets with carbon atoms in their tips. When these tiny carbon nanotubes exhibit metallic conductivity they possess extraordinary strength compared to steel, higher electrical properties than copper, are as efficient in conducting heat as a diamond and are as light as cotton.

"Our goal is not only the creation of new and better technologies and products, but to fulfill Honda's commitment to environment sustainability," said Dr. Hideaki Tsuru, project director from Honda Research Institute USA.

Past research efforts to control the structural formation of carbon nanotubes with metallic conductivity through conventional methodology resulted in a success rate of approximately 25 - 50%. Honda, who have worked in the field of carbon nanotube synthesis for almost a decade, has achieved a success rate of 91% metallic conductivity.

"This is the first report that shows we can control fairly systematically whether carbon nanotubes achieve a metallic state. Further research is in progress with the ultimate goal to take complete control over grown nanotube configurations to support their real world application," said Dr. Avetik Harutyunyan, principal scientist from Honda Research Institute USA, and the leader of the project.

"Our finding shows that the nanotube configuration which defines its conductivity depends not only on the size of the metal nanocatalyst used to nucleate the tube as was previously believed, but importantly also is based on its shape and crystallographic structure, and we learned to control it," said Dr. Harutyunyan, whose team of Honda scientists included Dr. Gugang Chen and Dr. Elena Pigos.

"We are excited about our teamwork and collaborations with researchers at Purdue and Louisville, who helped achieve this advance," he said. Researchers at Purdue, led by Professor Eric Stach, used a transmission electron microscope to observe nanotube formation, revealing that changes in the gaseous environment can vary the shape of the metal catalyst nanoparticles from very sharp faceted to completely round. Researchers at Louisville, led by Professor Gamini Sumanasekera, produced the nanotubes in larger volumes and made careful measurements to determine whether the nanotubes achieve a metallic state.

Honda's innovative research and development efforts during the past decade have yielded diverse innovations such as humanoid robotics, walking assist devices, the HondaJet, fuel cell technology, increased rice crop yields, and thin film solar cells, in addition to the design and development of automobiles, motorcycles and power equipment products. Honda has conducted consumer product related R&D in the United States since 1975 at Honda R&D Americas, Inc. For the purpose of researching future technologies, in January 2003, Honda Research Institute USA, Inc. (HRI-US) was founded along with HRI-EU (Europe) and HRI-JP (Japan). U.S. offices are located in California, Ohio and Massachusetts and include a computer science research division focused on human intelligence technologies and a materials science research division focused on functional nano-materials
.


I'm reporting this comment as:

Reported comments and users are reviewed by Autoblog staff 24 hours a day, seven days a week to determine whether they violate Community Guideline. Accounts are penalized for Community Guidelines violations and serious or repeated violations can lead to account termination.


    • 1 Second Ago
  • From Our Partners

    You May Like
    Links by Zergnet
    Share This Photo X