Researchers at the Massachusetts Institute of Technology have been researching where the bottlenecks are inside lithium-ion batteries that limit charging and discharging rates, and they've learned some interesting things. Lithium iron phosphate chemistry is particularly promising in terms of high charge and discharge rates. Researchers found that some new processes for manufacturing the lithium phosphate coating on lithium iron phosphate crystals could provide better access to the lithium ions, allowing them to move around more readily.
This all sounds similar to the premise behind the lithium iron phosphate batteries produced by A123 Systems and the lithium titanate cells produced by Altairnano. The increased surface area of material allows more ions and electrons to move in and out without heating up as much as traditional lithium cobalt oxide cells. The result is that cells made with these materials can be charged at very high rates without degrading the charge capacity over time. Imagine charging your electric vehicle in two minutes rather than 12 hours and you can understand the significance of this research.

The bigger issue remains the power needed to actually charge an automotive sized battery pack in a few minutes. A five-minute charge would require 180 kW or more, which is not something that's available at home or any existing charging stations.

[Source: ars technica]

I'm reporting this comment as:

Reported comments and users are reviewed by Autoblog staff 24 hours a day, seven days a week to determine whether they violate Community Guideline. Accounts are penalized for Community Guidelines violations and serious or repeated violations can lead to account termination.

    • 1 Second Ago
  • 2015 Toyota Highlander
    MSRP: $29,765 - $44,140
    2015 Jeep Grand Cherokee
    MSRP: $29,995 - $64,895
    2015 Honda Accord
    MSRP: $22,105 - $33,630
    2015 Honda Civic
    MSRP: $18,290 - $26,740
    2015 Mazda Mazda3
    MSRP: $16,945 - $25,545
    Share This Photo X